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a b s t r a c t 

Chaos is known as a natural candidate for cryptography applications owing to its prop- 

erties such as unpredictability and initial state sensitivity. However, certain chaos-based 

cryptosystems have been proven to exhibit various security defects because their used 

chaotic maps do not have complex dynamical behaviors. To address this problem, this pa- 

per introduces a cosine-transform-based chaotic system (CTBCS). Using two chaotic maps 

as seed maps, the CTBCS can produce chaotic maps with complex dynamical behaviors. For 

illustration, we produce three chaotic maps using the CTBCS and analyze their chaos com- 

plexity. Using one of the generated chaotic maps, we further propose an image encryption 

scheme. The encryption scheme uses high-efficiency scrambling to separate adjacent pix- 

els and employs random order substitution to spread a small change in the plain-image to 

all pixels of the cipher-image. The performance evaluation demonstrates that the chaotic 

maps generated by the CTBCS exhibit substantially more complicated chaotic behaviors 

than the existing ones. The simulation results indicate the reliability of the proposed im- 

age encryption scheme. Moreover, the security analysis demonstrates that the proposed 

image encryption scheme provides a higher level of security than several advanced image 

encryption schemes. 

© 2018 The Authors. Published by Elsevier Inc. 

This is an open access article under the CC BY-NC-ND license. 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 

 

 

 

 

 

 

 

 

 

1. Introduction 

At present, a large amount of digital information is generated and transmitted through various networks every mo-

ment [23] . The digital image is a widely used data format, as it carries information in a visualized manner. Among the

images spreading across networks, some are secret images that owners do not want others to access without authorization.

A typical example could be the military secret image. Thus, it is extremely important to protect the contents of these secret

images. To protect digital images, researchers have developed different types of technologies, such as data hiding [29] , wa-

termarking [10] , and encryption [9,27] . Among these technologies, image encryption offers the most straightforward method,

by transforming meaningful images into unrecognized noise-like ones [13,24,25] . An image encryption algorithm generally

follows the well-known confusion-diffusion concept [7,16,44] . The confusion property is achieved by randomly separating

adjacent image pixels, while the diffusion property can be obtained by spreading a small change in the plain-image to all
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pixels of the cipher-image [41,43] . One can reconstruct the original image information only when owning the correct secret

key. Without the correct key, one cannot access any information from the original image [19,48] . 

To date, numerous image encryption algorithms have been proposed [6,26] . Among all technologies used in image en-

cryption, chaos theory has attracted the most attention from researchers. Chaotic behavior is random, unpredictable, nonlin-

ear behavior [22,35] . A chaotic system is a mathematical model or an equation for describing chaotic behaviors. It possesses

many unique properties, such as dense periodic orbits, unpredictability, and initial state sensitivity [15] . These properties

can satisfy the requirements of image encryption [14] . Ever since Fridrich first designed an image encryption scheme using a

two-dimensional chaotic map in [11] , researchers have developed various image encryption schemes using chaos [15,20,45] .

In a chaos-based encryption scheme, the security level relies strongly on the complexity of its used chaotic map. How-

ever, existing chaotic maps may exhibit drawbacks in different aspects. Firstly, existing chaotic maps may demonstrate

chaos degradation when they are implemented in finite precision platforms, as their output states cannot be distributed

uniformly [34] . Secondly, they do not have complex behaviors, making their trajectories easily predicted using certain tech-

nologies [8] . Moreover, their chaotic ranges are either narrow or discontinuous [17] . If a chaotic map has narrow or dis-

continuous chaotic ranges, its chaos properties may be destroyed when its parameters are disturbed by certain external

factors such as noise [42] . Reports have indicated that several image encryption schemes using existing chaotic maps may

be successfully attacked [39] . 

In recent years, several new chaotic maps have been developed for image encryption [46] . However, these works also

exhibit certain drawbacks. Some of these chaotic maps have periodic windows, where they may fall into nonchaotic ranges.

Moreover, their outputs cannot be randomly distributed in the entire data range, which may not achieve high randomness.

To address these issues, this work proposes a cosine-transform-based chaotic system (CTBCS) to generate chaotic maps

possessing complex behaviors. As opposed to existing chaotic maps with specified definitions, the CTBCS provides a general

framework and can produce new chaotic maps using any two chaotic maps. As examples, we produce three chaotic maps

using the CTBCS and apply one of these to design an image encryption algorithm. The contributions and novelty of this

work are summarized as follows. 

(1) We develop the CTBCS as a general chaotic framework. Using existing chaotic maps as two seed maps, the CTBCS

can generate numerous new chaotic maps with excellent performance. Three sample chaotic maps are generated to

demonstrate the feasibility of the CTBCS. 

(2) Utilizing the LSC map produced by the CTBCS, we propose an LSC map-based image encryption scheme (LSC-IES). 

(3) We estimate the chaos performance of these sample chaotic maps of the CTBCS, and the results demonstrate that the

chaotic maps produced by CTBCS exhibit complex chaotic behaviors. 

(4) The simulation and security analysis demonstrate that LSC-IES can encrypt various types of images into unrecognized

cipher-images and achieve a higher level of security than several advanced image encryption algorithms. 

The remainder of this paper is organized as follows. Section 2 presents the CTBCS and provides three new chaotic maps

of the CTBCS. Section 3 introduces the LSC-IES using one new chaotic map. Section 4 evaluates the chaos performance of

the newly obtained chaotic maps by means of the CTBCS. Section 5 simulates the LSC-IES using different types of digital

images and then compares it with other encryption algorithms. Section 6 concludes the paper. 

2. CTBCS 

This section presents the proposed CTBCS and analyzes its properties. To demonstrate the effectiveness of the CTBCS,

three sample chaotic maps are generated using existing chaotic maps. 

2.1. Structure of CTBCS 

The proposed CTBCS is designed to address the disadvantages of existing chaotic maps in frail chaos and weak dynamical

behaviors. Mathematically, the CTBCS can be represented as 

x i +1 = cos (π(F (a, x i ) + G (b, x i ) + β)) , (1)

where F ( a , x i ) and G ( b , x i ) are two existing chaotic maps known as seed maps, a and b are their control parameters, and the

variable β is a shifting constant (we set β = −0 . 5 in this paper). 

As indicated in Eq. (1) , the CTBCS first combines the outputs of F ( a , x i ) and G ( b , x i ) with a shifting constant β and then

performs a cosine transform to generate the output. The combination operation can effectively shuffle the chaos dynamics

of the two seed maps, and the cosine transform exhibits very complex nonlinearity. Thus, the new chaotic maps produced

by the CTBCS have complex behaviors. Because the seed maps F ( a , x i ) and G ( b , x i ) in the CTBCS can be any existing chaotic

maps, users have the flexibility to use different settings of existing maps to produce numerous new chaotic maps. 
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Table 1 

Three new chaotic maps generated by CTBCS using existing Logistic, Sine, and Tent maps as seed maps. 

F ( a , x i ) G ( b , x i ) New chaotic maps Definition 

L (r, x i ) S(1 − r, x i ) Logistic-Sine-Cosine x i +1 = cos (π(4 rx i (1 − x i ) + (1 − r) sin (πx i ) − 0 . 5)) , 

(LSC) map where the parameter r ∈ [0, 1] 

S(r, x i ) T (1 − r, x i ) Sine-Tent-Cosine x i +1 = 

{
cos (π(r sin (πx i ) + 2(1 − r) x i − 0 . 5)) for x i < 0 . 5 ;
cos (π(r sin (πx i ) + 2(1 − r)(1 − x i ) − 0 . 5)) for x i ≥ 0 . 5 , 

(STC) map where the parameter r ∈ [0, 1] 

T (r, x i ) L (1 − r, x i ) Tent-Logistic-Cosine x i +1 = 

{
cos (π(2 rx i + 4(1 − r) x i (1 − x i ) − 0 . 5)) for x i < 0 . 5 ;
cos (π(2 r(1 − x i ) + 4(1 − r) x i (1 − x i ) − 0 . 5)) for x i ≥ 0 . 5 , 

(TLC) map where the parameter r ∈ [0, 1] 

4 encryption rounds
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Fig. 1. Structure of LSC-IES. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.2. New chaotic maps 

To illustrate the effectiveness of the CTBCS, this section generates three one-dimensional (1D) chaotic maps utilizing the

existing Logistic, Sine, and Tent maps as seed maps. The three existing chaotic maps can be mathematically defined as 

Logistic map : x i +1 = L (r, x i ) = 4 rx i (1 − x i ) . 
Sine map : x i +1 = S(r, x i ) = r sin (πx i ) . 

Tent map : x i +1 = T (r, x i ) = 

{
2 rx i if x i < 0 . 5 ;
2 r(1 − x i ) if x i ≥ 0 . 5 . 

(2)

The variable r is the control parameter of the Logistic, Sine, and Tent maps, while r ∈ [0, 1]. 

Setting the above three chaotic maps to be the two seed maps in Eq. (1) , we can obtain three new 1D chaotic maps, the

definitions of which are displayed in Table 1 . The Logistic-Sine-Cosine (LSC) map is generated using the Logistic map as F ( a ,

x i ) and the Sine map as G ( b , x i ). The Sine-Tent-Cosine (STC) map is generated using the Sine map as F ( a , x i ) and the Tent

map as G ( b , x i ). The Tent-Logistic-Cosine (TLC) map is generated using the Tent map as F ( a , x i ) and the Logistic map as G ( b ,

x i ). We set parameter a as r and parameter b as 1 − r, where r is the parameter of the generated chaotic maps. 

3. LSC-IES 

When chaotic maps are used in cryptography, their complexity dominates the security levels of the corresponding cryp-

tography systems. In this section, we design the LSC-IES using the LSC map produced by the CTBCS. It adopts the well-

known confusion-diffusion structure, which is an encryption framework with a high level of security [31] . Fig. 1 illustrates

the structure of the LSC-IES. The secure key K produces initial states for the LSC map to generate chaotic sequences, which

provide high-efficiency scrambling and random order substitution. The high-efficiency scrambling is designed to separate

adjacent pixels into different positions rapidly, while the random order substitution is used to change the pixel values us-

ing a pseudo-random order that is determined by the chaotic sequence. Following four rounds of scrambling and diffusion

operations, a plain-image can be encrypted to be an unrecognized cipher-image. Next, we present each step of the LSC-LES

in detail. 

3.1. Key distribution 

The secret key determines the initial states of the LSC map. According to the discussions in [1] , the key space of a

chaos-based cryptosystem must reach the size of 2 100 to resist various attacks. The secret key length in the LSC-IES is set
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Fig. 2. Secret key structure of LSC-IES. 

Fig. 3. Concept of high-efficiency scrambling. 

 

 

 

 

 

 

 

 

 

 

 

as 256 bits, and therefore its key space is 2 256 . Fig. 2 illustrates the structure of the secure key. It can be observed that it

consists of five parts K = { x 0 , p 0 , d, g, H } . Among these, ( x 0 , p 0 ) are the original initial states, d is the perturbation parameter

to disturb the original initial states, g is the coefficient of the initial states, and H = { H 1 , H 2 , H 3 , H 4 } contains four coefficients

for the perturbation parameter. Each of x 0 , p 0 , d , g , H 1 , H 2 , H 3 , H 4 has a length of 32 bits. The variables x 0 , p 0 , d are float

numbers within [0,1), and each can be obtained from a 32-bit stream by 

F N = 

32 ∑ 

i =1 

Bin i × 2 

−i . 

The coefficients g , H 1 , H 2 , H 3 , H 4 are integer numbers, each of which can be obtained by 

IN = 

32 ∑ 

i =1 

Bin i × 2 

i −1 . 

Thereafter, the initial states for the four encryption rounds can be calculated as follows: {
x (i ) 

0 
= (x 0 × g + d × H i ) mod 1 ;

p (i ) 
0 

= (r 0 × g + d × H i ) mod 1 , 
(3) 

where i = { 1 , 2 , 3 , 4 } . Using the initial states (x (i ) 
0 

, p (i ) 
0 

) , the LSC map can generate randomly distributed chaotic sequences

for the high-efficiency scrambling and random order substitution. 

3.2. High-efficiency scrambling 

The high-efficiency scrambling is designed to decorrelate the high correlations of adjacent pixels. It is performed within

a square matrix L 2 × L 2 , where L is the block size. Supposing that the plain-image to be encrypted has a size of M × N , the

block size L is obtained as 

L = min 

{� √ 

M � , � √ 

N � }, (4) 

where � α� is the floor operation to obtain the greatest integer that is not larger than α. Fig. 3 displays a straightforward

diagram of the high-efficiency scrambling. It can be observed that the image to be encrypted is divided into L 2 blocks.

The pixels in each row are first randomly permutated into different blocks according to the generated chaotic sequences,

following which their positions in each block are also randomly determined using other chaotic sequences. The overall

procedures of the high-efficiency scrambling are described as follows. 
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Fig. 4. Demonstration of high-efficiency scrambling procedures using O and Q in Eq. (5) . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

• Step 1 : Truncate an image of size L 2 × L 2 from the plain-image, where the block size L is calculated using Eq. (4) . 

• Step 2 : Generate four chaotic sequences: A , B , Y , and Z , each with length L 2 . 

• Step 3 : Sort A , B , Y , and Z , and obtain their corresponding index vectors IA , IB , IY , and IZ . 

• Step 4 : Initialize two matrices O and Q with a size L 2 × L 2 . Set each column of O as IA , and each column of Q as IY . 

• Step 5 : Shift each column of O according to the elements of IB , and shift each column of Q using the elements of IZ . 

• Step 6 : Set row index i = 1 . 

• Step 7 : For the i th row of the image, move its j th pixel to the Q O i, j , 
j th position of the O i , j th block. 

• Step 8 : Repeat step 6 and step 7 for i = 2 ∼ L 2 . 

To provide an improved demonstration of the high-efficiency scrambling procedure, we provide a numeral example to

illustrate each step, using a plain-image with a size of 4 × 4. According to the calculation in Eq. (4) , the block size L = 2 .

Firstly, the two index matrices O and Q are generated from the chaotic sequences. Suppose that the obtained O and Q values

are as follows: 

O = 

⎛ 

⎜ ⎝ 

2 1 4 3 

4 2 3 1 

3 4 1 2 

1 3 2 4 

⎞ 

⎟ ⎠ 

, Q = 

⎛ 

⎜ ⎝ 

3 1 2 4 

4 2 3 1 

1 3 4 2 

2 4 1 3 . 

⎞ 

⎟ ⎠ 

(5)

The index matrix O determines which block a pixel permutes to, and Q decides the position of a pixel within a block. Fig. 4

illustrates the mapping procedures between the plain-image P and scrambling result T using the two index matrices O and

Q . The detailed mapping procedures are as follows. 

• The 1 st row of O is (2, 1, 4, 3) and its determined positions in Q are (Q 2 , 1 , Q 1 , 2 , Q 4 , 3 , Q 3 , 4 ) = (4 , 1 , 1 , 2) . Then, the four

pixels in the 1 st row of P are permuted to the 4 th cell of the 2 nd block (position (2, 4)), the 1 st cell of the 1 st block (po-

sition (1, 1)), the 1 st cell of the 4 th block (position (3, 3)), and the 2 nd cell of the 3 rd block (position (3, 2)), respectively.

That is, T 2 , 4 = P 1 , 1 , T 1 , 1 = P 1 , 2 , T 3 , 3 = P 1 , 3 , and T 3 , 2 = P 1 , 4 . 

• The 2 nd row of O is (4, 2, 3, 1) and its determined positions in Q are (Q 4 , 1 , Q 2 , 2 , Q 3 , 3 , Q 1 , 4 ) = (2 , 2 , 4 , 4) . Then, the four

pixels in the 2 nd row of P are permuted to the 2 nd cell of the 4 th block (position (3, 4)), the 2 nd cell of the 2 nd

block (position (1, 4)), the 4 th cell of the 3 rd block (position (4, 2)), and the 4 th cell of the 1 st block (position (2, 2)),

respectively. That is, T 3 , 4 = P 2 , 1 , T 1 , 4 = P 2 , 2 , T 4 , 2 = P 2 , 3 , and T 2 , 2 = P 2 , 4 . 

• The 3 rd row of O is (3, 4, 1, 2) and its determined positions in Q are (Q 3 , 1 , Q 4 , 2 , Q 1 , 3 , Q 2 , 4 ) = (1 , 4 , 2 , 1) . Then, the

four pixels in the 3 rd row of P are permuted to the 1 st cell of the 3 rd block (position (3, 1)), the 4 th cell of the 4 th

block (position (4, 4)), the 2 nd cell of the 1 st block (position (1, 2)), and the 1 st cell of the 2 nd block (position (1, 3)),

respectively. That is, T 3 , 1 = P 3 , 1 , T 4 , 4 = P 3 , 2 , T 1 , 2 = P 3 , 3 , and T 1 , 3 = P 3 , 4 . 

• The 4 th row of O is (1, 3, 2, 4) and its determined positions in Q are (Q 1 , 1 , Q 3 , 2 , Q 2 , 3 , Q 4 , 4 ) = (3 , 3 , 3 , 3) . Then, the

four pixels in the 4 th row of P are permuted to the 3 rd cell of the 1 st block (position (2, 1)), the 3 rd cell of the 3 rd

block (position (4, 1)), the 3 rd cell of the 2 nd block (position (2, 3)), and the 3 rd cell of the 4 th block (position (4, 3)),

respectively. That is, T 2 , 1 = P 4 , 1 , T 4 , 1 = P 4 , 2 , T 2 , 3 = P 4 , 3 , and T 4 , 3 = P 4 , 4 . 

Algorithm 1 presents the pseudo-code of the high-efficiency scrambling. 

3.3. Image rotation 

The image rotation operation involves rotating the image clockwise by 90 ° As high-efficiency scrambling is performed

within the range of L 2 × L 2 , and the block size is obtained by Eq. (4) , only pixels within the range of L 2 × L 2 can be processed.

For an image of size M × N , all of its pixels can be scrambled only when it satisfies L = 

√ 

M = 

√ 

N . To ensure that all pixels

can be shuffled, we rotate the image 90 ° clockwise following each high-efficiency scrambling. 
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Algorithm 1 High-efficiency scrambling. 

Input: Image P of size M × N and initial state (x (i ) 
0 

, y (i ) 
0 

) . 

Output: Scrambled result T . 

1: Calculate L using Eq. (4); 

2: Generate chaotic sequence S using LSC map with initial state (x i 
0 
, y i 

0 
) , where S ∈ R 

4 L 2 ×1 ; 

3: A = S 1: L 2 ; B = S L 2 +1:2 L 2 ; Y = S 2 L 2 +1:3 L 2 ; Z = S 3 L 2 +1:4 L 2 ; 

4: [ A 

′ , IA ] = Sort (A ) , where A 

′ = A IA ; 

5: [ B 

′ , IB ] = Sort (B ) , where B 

′ = B IB ; 

6: [ Y 

′ , IY ] = Sort (Y ) , where Y 

′ = Y IY ; 

7: [ Z 

′ , IZ ] = Sort (Z ) , where Z 

′ = Z IZ ; 

8: Initialize T = P , O ∈ N 

L 2 ×L 2 , Q ∈ N 

L 2 ×L 2 . 

9: for j = 1 to L 2 do 

10: for i = 1 to L 2 do 

11: m = ((i + IB ( j) − 1) mod L 2 ) + 1 ; 

12: n = ((i + IZ ( j) − 1) mod L 2 ) + 1 ; 

13: O i, j = IA m 

; 

14: Q i, j = IY n ; 

15: end for 

16: end for 

17: for i = 1 to L 2 do 

18: for j = 1 to L 2 do 

19: a = O i, j ; b = Q a, j ; 

20: m 1 = � (a − 1) /L � ; n 1 = (a − 1) mod L ; 

21: m 2 = � (b − 1) /L � + 1 ; n 2 = ((b − 1) mod L ) + 1 ; 

22: x = m 1 × L + m 2 ; y = n 1 × L + n 2 ; 

23: T (x, y ) = P (i, j) ; 

24: end for 

25: end for 

Fig. 5. An example of determining substitution order. Matrix I is an index matrix obtained from a chaotic matrix, and T is the image to be processed. 

 

 

 

 

 

 

 

 

 

 

 

3.4. Random order substitution 

The substitution changes the pixel values and diffuses a small difference in the plain-image to all pixels of the cipher-

image. Most existing substitution algorithms diffuse the change in pixel values row by row and column by column, or by

following certain fixed rules. These fixed rules provide valuable information for security attacks. To overcome this drawback

and obtain a higher level of security, we design a random order substitution. The substitution order relies on an index

matrix, which is generated using the chaotic sequence. 

Fig. 5 presents a numeral example of the manner in which to determine the substitution order using an index matrix

with an image size 4 × 4. The matrix I is an index matrix obtained by sorting each column of a chaotic matrix, and T is the

image to be processed. It can be observed that the first row of I is (3, 1, 2, 4) and its determined substitution order is (3,

1) → (1, 2) → (2, 3) → (4, 4); the second row of I is (1, 2, 3, 2) and its determined substitution order is (1, 1) → (2, 2) → (3,

3) → (2, 4); the third row of I is (4, 3, 1, 3) and its determined substitution order is (4, 1) → (3, 2) → (1, 3) → (3, 4); and the

fourth row of I is (2, 4, 4, 1) and its determined substitution order is (2, 1) → (4, 2) → (4, 3) → (1, 4). The first pixel in each

iteration is changed by the final pixel in the previous iteration, and the first pixel in the first iteration is changed by the

final pixel in the final iteration. Therefore, we can obtain a substitution circle, as indicated by T in Fig. 5 . 
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Fig. 6. Bifurcation diagrams of (a) LSC; (b) STC; (c) TLC; (d) Logistic; (e) Sine; and (f) Tent maps. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

With the determined substitution order, we can randomly change the current pixel using the previous one and the

chaotic sequence. Suppose that the high-efficiency scrambling result T and generated chaotic matrix S both have sizes of

M × N , and I is an index matrix obtained by sorting each column of S . The random order substitution can be described as

follows: 

C I i, j , j = 

{ 

(T I i, j , j + T I M,N ,N + � 2 

32 × S I i, j , j � ) mod F for i = 1 , j = 1 ;
(T I i, j , j + C I i −1 ,N ,N + � 2 

32 × S I i, j , j � ) mod F for i = 2 ∼ N, j = 1 ;
(T I i, j , j + C I i, j−1 , j−1 + � 2 

32 × S I i, j , j � ) mod F for i = 1 ∼ N, j = 2 ∼ N, 

(6)

where the function � α� is used to obtain the greatest integer that is not larger than α, and F is the number of intensity

levels; for example, F = 256 if every pixel is presented using 8 bits. The substitution in the decryption process carries out

the inverse operation using the same substitution order, which can be defined as: 

T I i, j , j = 

{ 

(C I i, j , j − C I i, j−1 , j−1 − � 2 

32 × S I i, j , j � ) mod F for i = 1 ∼ N, j = 2 ∼ N;
(C I i, j , j − C I i −1 ,N ,N − � 2 

32 × S I i, j , j � ) mod F for i = 2 ∼ N, j = 1 ;
(C I i, j , j − T I M,N ,N − � 2 

32 × S I i, j , j � ) mod F for i = 1 , j = 1 . 

(7)

It should be noted that the substitution order in the decryption process is the exact opposite. 

4. Performance evaluation of generated chaotic maps 

The chaotic maps produced by the CTBCS exhibit complex chaotic behaviors. To demonstrate this property, we estimate

the chaos performance of the three 1D chaotic maps produced by the CTBCS, and compare these with the chaotic maps

produced by Zhou’s method in [47] and their seed maps. The comparisons are performed in terms of bifurcation diagrams,

Lyapunov exponents [47] , and sample entropy [33] . 

4.1. Bifurcation diagram 

The bifurcation diagram of a dynamical system plots its visited or approximately visited points in a phase plane. It

provides a visualized method to exhibit the chaotic system behaviors. Fig. 6 presents the bifurcation diagrams of the LSC,

STC, and TLC maps as well as their seed maps. The three seed maps, namely the Logistic, Sine, and Tent maps, have fixed

or periodic points in most parameter settings. Moreover, their output states are only distributed in a small part of the

phase plane. However, the three generated chaotic maps exhibit complicated behaviors in all parameter ranges, and their

output states are randomly distributed in the entire phase plane, indicating that they have robust chaotic behaviors and

their outputs are more random. 
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Fig. 7. Comparisons between various generated chaotic maps and their seed maps in terms of LE: (a) LSC map generated by CTBCS and LS map generated 

by ZBC [47] ; (b) STC map generated by CTBCS and ST map generated by ZBC [47] ; (c) TLC map generated by CTBCS and TL map generated by ZBC [47] . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.2. Lyapunov exponent 

Because chaotic behavior is one type of observed behavior, researchers from different fields have different viewpoints

regarding the existence of chaos. Among many technologies for evaluating chaos, the Lyapunov exponent (LE) is a commonly

accepted metric that describes the separation degree of two trajectories of a dynamical system, starting from extremely close

initial points. It can be described using Definition 1 . 

Definition 1. The LE of a first-order difference equation x i +1 = F (x i ) is mathematically defined by 

λF (x ) = lim 

n →∞ 

{
1 

n 

ln 

∣∣∣∣F n (x 0 + ε) − F n (x 0 ) 

ε

∣∣∣∣
}

, (8) 

where ε is a very small positive value. 

If F ( x ) is differentiable, Eq. (8) can be rewritten as 

λF (x ) = lim 

n →∞ 

{ 

1 

n 

n −1 ∑ 

i =0 

ln 

∣∣F ′ (x i ) 
∣∣} 

. (9) 

An LE greater than 0 means that two trajectories of a chaotic system will diverge exponentially in each iteration. Thus,

a dynamical system is considered to exhibit chaotic behaviors if it can obtain a positive LE. A larger LE means that the

trajectories diverge faster, indicating superior chaos performance. Fig. 7 plots the LEs of the chaotic maps produced by the

CTBCS and ZBC [47] with their used seed maps. The LSC map (CTBCS), STC map (CTBCS), TLC map (CTBCS), LS map (ZBC),

ST map (ZBC), and TL map (ZBC) can obtain positive LEs in every parameter setting, while the used seed maps have positive

LEs in only a few parameters. This indicates that both the CTBCS and ZBC can generate new chaotic maps that have wider

chaotic ranges than their seed maps. Furthermore, it can be observed that, utilizing the same seed maps, the CTBCS can

produce chaotic maps with significantly larger LEs than ZBC. This demonstrates that the proposed CTBCS is able to produce

chaotic maps with more complex chaotic behaviors. 

4.3. Sample entropy 

The sample entropy (SE) was developed to describe the complexity of a time series [33] . It provides a quantitative de-

scription of the similarity of outputs produced by dynamical systems, and is defined in Definition 2 . The dimension m and

distance r are usually set as 2 and 0.2 × std , respectively, where std indicates the standard deviation of the tested time series.

A larger SE demonstrates a lower degree of regularity of the time series; that is, higher complexity of the corresponding

dynamical system. 

Definition 2. The SE of a time series { x 1 , x 2 , . . . , x N } with a given dimension m is defined as 

SE(m, r, N) = − log 
A 

B 

, (10) 

where A and B are the numbers of vectors having d[ X m +1 (i ) , X m +1 ( j)] < r and d [ X m 

( i ), X m 

( j )] < r , respectively. The template

vector X m 

(i ) = { x i , x i +1 , . . . , x i + m −1 } , d [ X m 

( i ), X m 

( j )] is the Chebyshev distance [2] between X m 

( i ) and X m 

( j ), and r is the given

distance. 

Fig. 8 compares the SEs of the chaotic maps produced by the CTBCS and ZBC [47] with their seed maps. In each com-

parison, new chaotic maps are first produced by the CTBCS and ZBC using the same seed maps, following which the SEs of
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Fig. 8. Comparisons among various generated chaotic maps and their seed maps in terms of SE: (a) LSC map generated by CTBCS and LS map generated 

by ZBC [47] ; (b) STC map generated by CTBCS and ST map generated by ZBC [47] ; (c) TLC map generated by CTBCS and TL map generated by ZBC [47] . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the generated chaotic maps and their seed maps are calculated. It can be observed that the chaotic maps produced by the

CTBCS have significantly larger SEs compared to those produced by ZBC and their used seed maps. This indicates that the

CTBCS can produce chaotic maps with more complex output sequences. 

5. Simulation results and security analysis of LSC-IES 

This section implements the proposed LSC-IES in the MATLAB software and analyzes its security. The test images are

mainly obtained from the USC-SIPI “Miscellaneous”1 , the USC-SIPI “Aerials”2 and the BOWS-2 3 image datasets. The USC-

SIPI “Miscellaneous” consists of 44 images, including 16 color and 28 monochrome images. The USC-SIPI “Aerials” dataset

consists of 38 images, including 37 color and 1 monochrome. The BOWS-2 contains 10,0 0 0 original images used in the 2nd

BOWS Contest. 

5.1. Simulation results 

An encryption algorithm should be capable of encrypting different types of digital images into cipher-images with high

security levels. Only by using the correct secret key can one completely recover the information of the original image. With-

out the correct secret key, one cannot obtain any information regarding the original image. Fig. 9 illustrates the encrypted

results of the LSC-IES using different types of images. The grayscale image is selected from the USC-SIPI “Miscellaneous”

dataset, and the color image is from the USC-SIPI “Aerials” dataset. When a color image is encrypted, its three color chan-

nels are encrypted independently. As can be observed, the five test images have various patterns, but LSC-IES can encrypt

these to be cipher-images with random distributions. Attackers experience difficulties in obtaining the original informa-

tion from their pixel distribution. As each step is completely reversible, the proposed LSC-IES can fully recover the original

images from the corresponding cipher-images. 

An image encryption algorithm should exhibit high encryption efficiency. Because the LSC map used has a rapid imple-

mentation speed, the high-efficiency scrambling and random order substitution have low computational complexity. Thus,

the LSC-IES can achieve a fast encryption speed. Table 2 lists the required times of encrypting one image with different

sizes using various image encryption algorithms. The experiments are performed on a computer under the following envi-

ronments: Intel(R) Core(TM) i7-7700 CPU @ 3.60 GHz with 8 GB memory, Windows 10 operating system. It can be observed

that, for different image sizes, the proposed LSC-IES exhibits faster encryption speeds than other encryption algorithms. 

An image encryption algorithm is also required to produce decrypted images with high quality. In the LSC-LES encryption

operation, a slight difference of a pixel in the plain-image can influence all pixels in the cipher-image, which can guarantee

that the cipher-images exhibit high security levels. However, in the decryption operation, a slight difference of a pixel in

the cipher-image can influence only a few pixels of the decrypted result. In this case, if a cipher-image encrypted by the

LSC-IES loses a certain amount of data, the decryption process can also recover most visual contents of the original image.

Fig. 10 illustrates the image quality of the decrypted results when the cipher-images of the LSC-IES suffer from noise or

different data loss percentages. It can be observed from Fig. 10 (a) that, when the cipher-image experiences no data loss,

the decryption procedure can completely recover the original image. However, even when the cipher-images have noise or
1 http://sipi.usc.edu/database/database.php?volume=misc . 
2 http://sipi.usc.edu/database/database.php?volume=aerials . 
3 http://bows2.ec-lille.fr/ . 

http://sipi.usc.edu/database/database.php?volume=misc
http://sipi.usc.edu/database/database.php?volume=aerials
http://bows2.ec-lille.fr/
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Fig. 9. Simulation results of five different digital images: (a) plain-images, including one binary image, three grayscale images, and one color image; (b) 

histograms of (a); (c) encryption results of (a); (d) histograms of (c); and (e) decryption results of (c). 

 

 

 

lose some data, their decrypted results contain the most visual information of the original images, as can be observed from

Figs. 10 (b) to (e). Thus, the proposed LSC-IES can decrypt cipher-images with high quality. 

5.2. Security analysis 

To demonstrate the superiority of the LSC-IES, this section analyzes its security level in terms of the following four

aspects: key security, randomness of cipher-images, ability to resist differential attacks, and adjacent pixel correlation. To
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Table 2 

Required time (seconds) for encrypting one image with different sizes 

using different image encryption algorithms. 

Image size 128 × 128 256 × 256 512 × 512 1024 × 1024 

Diaconu [9] 0.0579 0.2224 0.9731 3.8377 

PXMW [32] 0.0902 0.3440 1.3357 5.3223 

CCB [5] 0.2757 0.9810 3.8539 15.4565 

HZ [18] 0.1531 0.6347 2.4913 9.9185 

XLLH [40] 0.0247 0.1164 0.4924 20.144 

ZBC1 [47] 0.0933 0.3843 1.4824 5.8175 

LLZ [28] 0.0323 0.1440 0.5510 2.0864 

LSC-IES 0.0244 0.0949 0.4010 1.9857 

Fig. 10. Quality analysis of image decryption: (a) cipher-image and its decrypted image; (b) cipher-image with 2% ‘salt & pepper’ noise and its decrypted 

image; (c) cipher-image with 1% data loss and its decrypted image; (d) cipher-image with 2% data loss and its decrypted image. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

illustrate the effectiveness of the LSC-IES further, we compare it with the following advanced image encryption methods:

WWZ [36] , ZBC1 [47] , XLLH [40] , LSZ [30] , HZ [18] , ZBC2 [46] , WZNS [38] , LLZ [28] , and CKW [3] . For these competing image

encryption schemes, several test results are reported in the reference papers and some of their source codes can be accessed.

To conduct a fair comparison, we report the test results of the competing encryption algorithms as follows. Firstly, if the

experimental results of the algorithm have been reported by authors, we reference the reported results directly. Next, if the

experimental results have not been reported but the algorithm source codes can be accessed, we run the source codes to

obtain the experimental results. Finally, if neither the experimental results nor source codes can be obtained, we implement

the algorithm to obtain the experimental results. 

5.2.1. Key security analysis 

The key size of an encryption algorithm should be appropriate. The key space of the LSC-IES is 2 256 , which satisfies

the key size requirements and exhibits high performance in resisting various security attacks [1] . Moreover, an encryption

algorithm should be extremely sensitive with its secret key. Otherwise, incorrect secret keys with slight differences may also

correctly decrypt the information of the original image, which may make the actual key space smaller than the theoretical

one [1] . 

The number of bit change rate (NBCR) defined in [4] can be used to test the key sensitivity of the LSC-IES. For two

images B 1 and B 2 , the NBCR is defined as 

NBCR (B 1 , B 2 ) = 

Ham (B 1 , B 2 ) 

Len 

, (11)

where Ham (B 1 , B 2 ) is the Hamming distance of B 1 and B 2 , and Len is the bit length of B 1 or B 2 . From Eq. (11) , we can

determine that, if the obtained NBCR approaches 50%, the two images B 1 and B 2 are totally different. 

Our experiment is established as follows. For a given secret key K 1 , we change one of its 256 bits to obtain K 2 . To test

the key sensitivity in the encryption process, we first encrypt the plain-image P using K 1 and K 2 , respectively, and generate

two cipher-images C 1 and C 2 . Subsequently, the NBCR values of C 1 and C 2 are calculated. To test the key sensitivity in the

decryption process, we first decrypt the cipher-image C using K and K , respectively, and obtain two decrypted results
1 1 2 
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Fig. 11. Sensitivity analysis of secret key: (a) NBCR between C 1 and C 2 , where C 1 and C 2 are two encrypted images obtained from two secret keys with 

one bit difference; and (b) NBCR between D 1 and D 2 , where D 1 and D 2 are two decrypted results from two secret keys with one bit difference. 

Fig. 12. Demonstration of diffusion property of LSC-IES: (a) plain-image P 1 ; (b) plain-image P 2 , which has one bit difference with P 1 in position (100,100); 

(c) cipher-image C 1 = Enc(P 1 , K ) ; (d) cipher-image C 2 = Enc(P 2 , K ) ; and (e) difference | C 1 − C 2 | . 

 

 

 

 

 

 

 

 

 

 

 

D 1 and D 2 . Then, the NBCR values of D 1 and D 2 are calculated. Fig. 11 illustrates the key sensitivity analysis results of the

LSC-IES. It is indicated that, when any one bit of the secret key is changed, the two obtained cipher-images and decrypted

images are completely different. This means that the LSC-IES has an extremely sensitive secret key. 

5.2.2. Ability to resist differential attacks 

The differential attack is a commonly used and an efficient security attack. By studying the manner in which the differ-

ences in plain-images can influence cipher-images, the differential attack aims to build a relationship between plain-images

and their corresponding cipher-images. An image encryption scheme exhibits high performance in resisting differential at-

tacks if it possesses the diffusion property. The diffusion property indicates that a slight change in the plaintexts can spread

over the entire data in the ciphertexts. Fig. 12 illustrates the diffusion property of the LSC-IES. When changing one bit of a

plain-image, the two cipher-images encrypted by the LSC-IES are independent and different, as can be observed in Fig. 12 (e).

The number of pixel change rate (NPCR) and uniform average change intensity (UACI) are two measures for testing

whether an encryption algorithm can resist differential attacks [37] . The NPCR counts the number of different pixels, while

the UACI calculates the average change in pixels between two images. Supposing that C 1 and C 2 are two cipher-images that

their plain-images have only one bit difference, their NPCR and UACI values can be calculated asfollows: 

NPCR (C 1 , C 2 ) = 

∑ 

i, j 

A (i, j) 

G 

× 100% , 
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and 

UACI (C 1 , C 2 ) = 

∑ 

i, j 

| C 1 (i, j) − C 2 (i, j) | 
R × G 

× 100% , 

where G is the number of pixels in an image, R indicates the largest allowed pixel value, and A records the difference

between C 1 and C 2 , which is defined as 

A (i, j) = 

{
0 , if C 1 (i, j) = C 2 (i, j) ;
1 , if C 1 (i, j) � = C 2 (i, j) . 

In recent years, strictly critical NPCR and UACI values were proposed in [37] . Given a significance level α, the critical

NPCR score N 

∗
α is obtained as follows: 

N 

∗
α = 

G − �−1 (α) 
√ 

G/R 

G + 1 

. 

An image encryption algorithm offers a high ability to resist differential attacks if its obtained NPCR value is greater than

N 

∗
α . The critical UACI scores (U ∗−

α , U ∗+ 
α ) with the given α can be obtained using {

U 

∗−
α = μU − �−1 (α/ 2) σU ;

U 

∗+ 
α = μU + �−1 (α/ 2) σU , 

where 

μU = 

G + 2 

3 G + 3 

, 

and 

σU = 

(G + 2)(G 

2 + 2 G + 3) 

18(G + 1) 2 GR 

. 

An encryption algorithm can pass the test if the calculated UACI value is within the range (U ∗−
α , U ∗+ 

α ) . 

Our experiment uses the 25 grayscale images from the USC-SIPI “Miscellaneous” dataset as the test images. Among

these images, seven images have a size of 256 × 256, 15 images have a size of 512 × 512, and the remaining four im-

ages have a size of 1024 × 1024. The significance level α is set as 0.05 in our experiment, as recommended by Wu et al.

[37] . Then, for an image of size 256 × 256, N 

∗
0 . 05 

= 99 . 5693% and (U ∗−
0 . 05 

, U ∗+ 
0 . 05 

) = (33 . 2824% , 33 . 6447%) ; for an image of size
Table 3 

NPCR results of various image encryption schemes. The image sizes images from “5.1.09” to “5.2.08”, from “5.2.09” to “ruler.512”, and 

from “5.3.01” to “testpat.1k” are 256 × 256, 512 × 512 and 1024 × 1024, respectively. The numbers in bold fonts are the test results 

that fail to pass the NPCR test. 

File name WWZ [36] ZBC1 [47] XLLH [40] LSZ [30] HZ [18] ZBC2 [46] WZNS [38] CKW [3] LSC-IES 

5.1.09 99.6338 99.5575 99.6246 99.6109 99.6124 99.6170 99.6506 99.6140 99.6292 

5.1.10 99.6017 99.5544 0.0092 99.5987 99.5972 99.6017 99.6063 99.5880 99.6292 

5.1.11 99.5956 99.8123 99.6445 99.5697 99.5956 99.6460 99.6490 99.6033 99.7055 

5.1.12 99.6292 99.6109 99.5972 99.6338 99.6017 99.6048 99.6170 99.5651 99.7055 

5.1.13 99.6109 99.7421 99.6582 99.6201 99.6552 99.5758 99.5605 99.5789 99.6765 

5.1.14 99.6185 99.6933 99.5987 99.6094 99.6002 99.5621 99.6216 99.6765 99.6765 

5.2.08 99.6059 99.6101 99.6216 99.6056 99.6220 99.6292 99.5987 99.6037 99.6250 

5.2.09 99.6029 99.7025 99.6048 99.6410 99.6208 99.6048 99.6220 99.6029 99.6292 

5.2.10 99.6010 99.6120 99.5861 99.6067 99.5968 99.6155 99.6162 99.6124 99.6212 

7.1.01 99.6040 99.5190 99.6162 99.6132 99.6181 99.6166 99.6166 99.6082 99.6208 

7.1.02 99.5941 99.7200 99.6025 99.6124 99.6140 99.5968 99.6109 99.6174 99.6025 

7.1.03 99.6132 99.4072 99.5998 99.5983 99.6166 99.6075 99.6216 99.6120 99.6078 

7.1.04 99.6098 99.6037 99.6033 99.6052 99.6227 99.6277 99.6090 99.5911 99.6082 

7.1.05 99.5995 99.4572 99.6307 99.5842 99.5960 99.6284 99.6063 99.6178 99.6014 

7.1.06 99.6109 99.5213 99.6105 99.6086 99.6212 99.6025 99.6101 99.6174 99.6063 

7.1.07 99.5934 99.5007 99.6029 99.6193 99.6113 99.6037 99.6220 99.5922 99.5964 

7.1.08 99.6098 99.6902 99.6120 99.5869 99.5914 99.6304 99.6101 99.6056 99.5953 

7.1.09 99.5815 99.7181 99.6048 99.6094 99.6067 99.6193 99.5861 99.6086 99.6094 

7.1.10 99.5850 99.5163 99.6212 99.6063 99.6056 99.6380 99.6120 99.5941 99.6078 

boat.512 99.6284 99.7128 99.6067 99.6132 99.6021 99.6109 99.6086 99.6101 99.6181 

gray21.512 99.6014 99.6120 99.6094 99.6162 99.6239 99.6109 99.6040 99.6159 99.6029 

ruler.512 99.6151 99.3118 99.6113 99.6189 99.5930 99.6082 99.6227 99.6212 99.6033 

5.3.01 99.6132 99.6040 99.6116 99.6169 99.6100 99.6173 99.6099 99.6072 99.6061 

5.3.02 99.6107 99.4789 99.6223 99.6010 99.6129 99.6099 99.6099 99.6116 99.6190 

7.2.01 99.6010 99.7578 99.6042 99.6147 99.5964 99.5981 99.6130 99.6204 99.6077 

Pass rate 23/25 15/25 23/25 23/25 24/25 23/25 23/25 24/25 25/25 
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Table 4 

UACI results of various image encryption schemes. The image sizes images from “5.1.09” to “5.2.08”, from “5.2.09” to “ruler.512”, and 

from “5.3.01” to “testpat.1k” are 256 × 256, 512 × 512, and 1024 × 1024, respectively. The numbers in bold fonts are the test results 

that fail to pass the UACI test. 

File name WWZ [36] ZBC1 [47] XLLH [40] LSZ [30] HZ [18] ZBC2 [46] WZNS [38] CKW [3] LSC-IES 

5.1.09 33.5119 33.7574 33.4425 33.5527 33.4652 33.2580 33.4387 33.4032 33.3651 

5.1.10 33.4263 33.1739 0.0011 33.4381 33.5448 33.2845 33.4701 33.3557 33.5240 

5.1.11 33.4192 33.3198 33.4840 33.4390 33.4162 33.5448 33.4150 33.4696 33.5106 

5.1.12 33.2672 33.6656 33.3609 33.4373 33.2152 33.3578 33.5082 33.4634 33.4172 

5.1.13 33.4252 34.3306 33.3039 33.3488 33.4699 33.7371 33.4939 33.3046 33.5065 

5.1.14 33.2919 33.1888 33.5008 33.5133 33.5554 33.2361 33.7240 33.4796 33.4875 

5.2.08 33.4509 32.7443 33.5233 33.4377 33.4575 33.2432 33.4694 33.4493 33.4973 

5.2.09 33.4543 34.0963 33.4834 33.4939 33.4175 33.5176 33.4704 33.5077 33.4778 

5.2.10 33.4365 33.4982 33.4532 33.3888 33.4315 33.3565 33.5688 33.4457 33.4327 

7.1.01 33.4811 33.5512 33.3369 33.5553 33.5150 33.1477 33.4531 33.4890 33.4154 

7.1.02 33.4762 33.0872 33.4121 33.4342 33.5221 33.4418 33.3931 33.4190 33.4698 

7.1.03 33.5346 33.7230 33.4970 33.4585 33.4777 33.2279 33.4599 33.4689 33.4632 

7.1.04 33.3450 33.6036 33.4412 33.4830 33.4721 33.1993 33.4471 33.4997 33.4996 

7.1.05 33.5380 33.1520 33.4753 33.4393 33.4757 33.2974 33.3758 33.4313 33.4647 

7.1.06 33.4766 33.8290 33.4571 33.5634 33.5035 33.3352 33.4942 33.4760 33.4416 

7.1.07 33.4695 33.5833 33.3844 33.5241 33.4317 33.2157 33.4876 33.4470 33.3906 

7.1.08 33.4258 33.4212 33.3863 33.4251 33.4274 33.2077 33.5078 33.5203 33.4029 

7.1.09 33.4954 32.8751 33.3879 33.4606 33.4452 33.2849 33.4584 33.4704 33.4686 

7.1.10 33.4389 32.9976 33.4615 33.4119 33.4434 33.1952 33.4332 33.4892 33.4434 

boat.512 33.4693 33.9503 33.4589 33.4993 33.4059 33.3673 33.4197 33.5414 33.4472 

gray21.512 33.4667 33.4646 33.3857 33.4634 33.4554 33.4830 33.4906 33.4331 33.4781 

ruler.512 33.5154 33.4628 33.5253 33.5090 33.4795 33.7365 33.5193 33.4363 33.3883 

5.3.01 33.4973 32.9559 33.5380 33.4698 33.4516 33.4406 33.4413 33.4886 33.4683 

5.3.02 33.5109 33.9252 33.4525 33.4820 33.4579 33.3072 33.5189 33.4384 33.4428 

7.2.01 33.4826 33.3653 33.4348 33.4878 33.4718 33.5820 33.4428 33.4192 33.4688 

Pass rate 22/25 6/25 23/25 23/25 24/25 7/25 22/25 25/25 25/25 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

512 × 512, N 

∗
0 . 05 

= 99 . 5893% and (U ∗−
0 . 05 

, U ∗+ 
0 . 05 

) = (33 . 3730% , 33 . 5541%) ; for an image of size 1024 × 1024, N 

∗
0 . 05 

= 99 . 5994%

and (U ∗−
0 . 05 

, U ∗+ 
0 . 05 

) = (33 . 4183% , 33 . 5088%) . Tables 3 and 4 display the NPCR and UACI values of the different image encryp-

tion schemes, respectively. It can be observed that the LSC-IES can pass all NPCR and UACI tests, while other encryption

schemes cannot pass certain tests. This indicates that the proposed LSC-IES exhibits high performance in terms of resisting

differential attacks. 

5.2.3. Randomness of cipher-images 

The pixels of an ideal cipher-image are required to be uniformly distributed to resist statistic attacks. The National

Institute of Standards and Technology (NIST) SP800-22 is an established criterion for measuring the randomness of data

sequence [21] . It contains 15 sub-tests and uses a group of binary sequences as input. All sub-tests aim to identify the

non-randomness areas of the binary sequences. Each sub-test produces a P − v alue for the group of binary sequences, and

generates a p − v alue for every binary sequence. Our experiment sets the significance level α as 0.01, as recommended by

III et al. [21] . The number of tested binary sequences should be larger than or equal to α−1 , and is 120 in our experiment. 

The test results are interpreted from the following three perspectives: P − v alue, pass rate, and p − v alue T . The P −
v alue interpretation checks the P − v alue s for all binary sequences and passes the test if the corresponding P − v alue is

within the range [ α, 1]. The pass rate interpretation counts the pass proportion of the 120 binary sequences. Using the

calculation method provided in [21] , the minimum pass rate T = 0 . 9628 when the number of binary sequences s = 120 and

the significance level α = 0 . 01 . The p − v alue T interpretation collects the distribution of P − v alue s. It is calculated using

the distribution of P − v alue according to the calculation method in [21] . If the generated p − v alue T is larger than 0.0 0 01,

the test sequences are considered to pass the test. 

Our experiment uses 120 digital images (filenames from “1.pgm” to “120.pgm”) selected from the BOWS-2 database. First,

these images are encrypted using the LSC-IES to obtain 120 cipher-images, and each cipher-image is then used as a binary

sequence. As all test images have a size of 512 × 512 and every pixel is represented by 8 bits, a binary sequence has a bit

length of 512 × 512 × 8 = 2 , 097 , 152 . Thus, our experiment uses 120 binary sequences as input, each of which has a length

of 2,097,152 bits, and Table 5 lists the test results. It can be observed that the 120 images encrypted by the LSC-IES can pass

all 15 sub-tests using the three interpretations. This indicates that the cipher-images of the LSC-IES exhibit high randomness.

5.2.4. Adjacent pixel correlation analysis 

As data redundancy exists in natural images, the adjacent pixels of a natural image may exhibit high correlations. An im-

age encryption algorithm needs to weaken these high correlations. The correlation of two pixel sequences can be calculated

by 

AP C = 

E[(X − μX )(Y − μY )] 
2 

, (12) 

σ
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Table 5 

Randomness test results of 120 cipher-images encrypted by LSC-IES using NIST SP800-22 test suite. 

P -v alue Pass rate P − v alue T 
Sub-tests ≥ 0.01 ≥ 0.9628 ≥ 0.0 0 01 

Frequency 0.4373 Pass 0.9917 Pass 0.5627 Pass 

Block frequency (m = 128) 0.7565 Pass 0.9833 Pass 0.8383 Pass 

Cumulative sums Forward 0.6025 Pass 0.9917 Pass 0.7184 Pass 

Reverse 0.4686 Pass 0.9917 Pass 0.5946 Pass 

Runs 0.4071 Pass 0.9667 Pass 0.5308 Pass 

Long runs of ones 0.0781 Pass 1.0 0 0 0 Pass 0.1033 Pass 

Rank 0.0822 Pass 1.0 0 0 0 Pass 0.1094 Pass 

Spectral DFT 0.5681 Pass 0.9750 Pass 0.6884 Pass 

Non-overlapping templates ∗ 0.4787 Pass 0.9903 Pass 0.5546 Pass 

Overlapping templates (m = 9) 0.2328 Pass 0.9917 Pass 0.3229 Pass 

Universal 0.3925 Pass 0.9917 Pass 0.5150 Pass 

Approximate entropy (m = 10) 0.1552 Pass 0.9750 Pass 0.2165 Pass 

Random excursions ∗ 0.2447 Pass 0.9936 Pass 0.7719 Pass 

Random excursions variant ∗ 0.2923 Pass 0.9929 Pass 0.7670 Pass 

Serial (m = 16 , ∇	2 
m ) P − v alue 1 0.5681 Pass 0.9917 Pass 0.6884 Pass 

P − v alue 2 0.2873 Pass 0.9833 Pass 0.3926 Pass 

Linear complexity (M = 500) 0.4686 Pass 0.9917 Pass 0.5946 Pass 

∗Average value of multiple tests. 

Fig. 13. Adjacent pixels of five original images and their encrypted images by LES-IES: (a) one of five plain-images; (b) horizontal adjacent pixel pairs of 

five plain-images; (c) vertical adjacent pixel pairs of five plain-images; (d) diagonal adjacent pixel pairs of five plain-images; (e) cipher-image of (a); (f) 

horizontal adjacent pixel pairs of five cipher-images; (g) vertical adjacent pixel pairs of five cipher-images; and (h) diagonal adjacent pixel pairs of five 

cipher-images. In each figure, the X-axis denotes the index of the five images, while the Y-Z plane plots the pixel pairs. 

 

 

 

 

 

 

 

 

 

 

 

 

where X and Y denote the two pixel sequences, μ is the mathematical expectation, and σ is the mathematical standard

derivation. When testing the adjacent pixel correlation of an image, X is a selected pixel sequence and Y is the adjacent

pixel sequence, and each pixel of Y is the horizontal, vertical, or diagonal neighbor pixel of X . If X and Y exhibit a high

correlation, the obtained APC approaches 1 or -1; otherwise, it approaches 0. 

To demonstrate the ability of the LSC-IES in terms of decorrelating natural images visually, we first select five images

from the BOWS-2 image dataset (filenames from “1” to “5”) and then encrypt these using the LSC-IES. Fig. 13 plots these

adjacent pixel pairs of the plain-images and their cipher-images. A total of 10 0 0 pixel pairs are randomly selected from every

image. It can be observed that, in each figure, the X-axis indicates the five images, while the Y-Z plane plots the values of

the adjacent pixels. The adjacent pixel pairs of the plain-images are mostly on or close the diagonal lines, indicating that

these adjacent pixels exhibit strong correlations. However, the adjacent pixel pairs of all cipher-images are distributed quite

randomly across the Y-Z phase plane, demonstrating that they exhibit weak correlations. This indicates that the proposed

LSC-IES can efficiently decorrelate the high correlations of the plain-images. 

Table 6 displays the APC values of the plain-image “Lena” and its cipher-images, encrypted by various image encryption

methods. As the APC results of LLZ [28] , ZBC2 [46] , and WZNS [38] have been reported in [38] , and those of [18] have
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Table 6 

Adjacent pixel correlations of plain-image “Lena” and its results using 

various image encryption methods. 

Encryption schemes Horizontal Vertical Diagonal 

“Lena” image 0.9400 0.9709 0.9710 

FLMLC [12] 0.0368 0.0392 0.0068 

ZBC1 [47] −0.0054 0.0045 0.0031 

WZNS [38] 0.0053365 −0.0027616 0.0016621 

WWZ [36] −0.026878 0.024223 −0.0 0 0569 

XLLH [40] 0.0 0 0369 0.001441 0.002217 

LSZ [30] −0.001458 −0.002029 0.001899 

HZ [18] 0.0033455 −0.0 0 08454 −0.0 0 02044 

ZBC2 [46] 0.002098 −0.0 0 0991 −0.001337 

LLZ [28] 0.0127 −0.0190 −0.0012 

CKW [3] 0.001381 0.0016061 0.002578 

LSC-IES −0.003280 −0.0 0 0777 −0.0 0 0181 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

been reported in its literature, we reference these results directly. We implemented the other encryption algorithms in the

MATLAB software and calculated their APC results. From the table, it can be observed that the LSC-IES outperforms LLZ [28] ,

FLMLC [12] , ZBC1 [47] , WZNS [38] , WWZ [36] , and HZ [18] in all the horizontal, vertical and diagonal directions, and has

smaller absolute APC values than the remaining algorithms in two directions. This further demonstrates that the LSC-IES

exhibits high efficiency in breaking the strong correlations of adjacent pixels in natural images. 

6. Conclusion 

This paper firstly proposed a cosine-transform-based chaotic system known as the CTBCS, which uses the cosine trans-

form as a nonlinear transform to produce new chaotic maps with complex chaos performance. As examples, three new

chaotic maps were produced to demonstrate the efficiency of the CTBCS. The performance evaluations demonstrated that

the chaotic maps of the CTBCS exhibit significantly superior chaos performance over the chaotic maps produced by other

methods and their seed maps. Using the LSC map generated by the CTBCS, we further proposed an image encryption scheme

known as LSC-IES. The LSC-IES follows the well-known diffusion-confusion concept and we simulated it using different dig-

ital images. The security analysis indicated that the LSC-IES is quite sensitive to its secret keys, and has a higher security

level than several competing image encryption algorithms. This work can promote the development of chaos theory and

chaos-based encryption. We will investigate the further application of LSC-IES in video encryption. 
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